首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1004篇
  免费   46篇
  国内免费   98篇
化学   1029篇
晶体学   11篇
力学   2篇
综合类   12篇
数学   45篇
物理学   49篇
  2023年   12篇
  2022年   21篇
  2021年   111篇
  2020年   94篇
  2019年   72篇
  2018年   89篇
  2017年   42篇
  2016年   71篇
  2015年   41篇
  2014年   32篇
  2013年   86篇
  2012年   72篇
  2011年   30篇
  2010年   34篇
  2009年   51篇
  2008年   47篇
  2007年   37篇
  2006年   30篇
  2005年   21篇
  2004年   16篇
  2003年   26篇
  2002年   17篇
  2001年   13篇
  2000年   12篇
  1999年   14篇
  1998年   9篇
  1997年   8篇
  1996年   6篇
  1995年   8篇
  1994年   3篇
  1993年   5篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有1148条查询结果,搜索用时 15 毫秒
991.
Triorganotin(IV) complexes with polyaromatic azo-azomethine carboxylate ligands viz. 2-{4-hydroxy-3-[(2/4-hydroxyphenylimino)methyl]phenylazo}benzoic acids [H3L1/H3L2] were synthesized by reacting the ligands with either bis-tri-n-butyltin(IV) oxide (for 1 and 4) or trimethyltin(IV) chloride in presence of triethylamine (for 2 and 5) or triphenyltin(IV) hydroxide (for 3 and 6). The complexes were characterized by elemental analysis, UV, IR, NMR, and mass spectrometry. NMR spectroscopic studies of the compounds suggested that the complexes adopt four-coordinate tetrahedral geometry around tin in solution. Molecular structures of 1 and 2 were determined by single-crystal X-ray diffraction. Both complexes have distorted trigonal bipyramidal geometry around tin in the solid state. Compound 1 is a one-dimensional (1-D) double chain coordination polymer which can be described as two different 24- and 30-membered non-porous macrocyclic rings constructed from two tributyltin units and two ligand moieties. The structure of 2 comprises a discrete cyclic centrosymmetric dimer with two lattice water molecules per formula unit. In the dimer, two trimethyltin entities are bridged by two ligand moieties. The dimers are further interconnected with lattice water molecules by multiple O–H?O hydrogen bonds to form a 1-D H-bonded network. The complexes were also screened for their antimicrobial activities.  相似文献   
992.
Hulless barley contains phenolic compounds and possesses various antioxidant activities. To clarify the effects of thermal processing and in vitro digestion on the release of phenolic compounds in hulless barley, we studied the phenolic components and antioxidant activities of hulless barley after steaming, roasting processes, and in vitro digestions. Both total phenolic content (TPC) and total flavonoid content (TFC) in raw hulless barley (HB, 4.14 mg/g DW and 1.53 mg/g DW, respectively) were higher than that of steamed hulless barley (SHB) and roasted hulless barley (RHB). In vitro digestion significantly released more ferulic acid from its bound form, but hydrolyzed some amount of flavonoid (luteolin). Chrysoeriol-7-O-glucouronide was significantly detected (412.13 µg/g DW in HB, 382.19 µg/g DW in SHB, and 396.91 µg/g DW in RHB) in all three hulless barley. The total released content of phenolic compounds obtained from each phase after digestion reached to 46% and 45% for SHB and RHB, which was higher than that in the HB (41%). The antioxidant assay (via DPPH and ABTS free radical scavenging assays) indicated that the capacity of HB was obviously higher than that of SHB and RHB in undigested group. For digested group, the ABTS+ assay order was following, undigested > oral > small intestine > gastric > large intestine. The DPPH assay results indicated the antioxidant capacity as the order of undigested > oral > gastric > large intestine. Correlation analysis showed that ferulic acid, chrysoeriol-7-O-glucouronide, luteolin, chrysoeriol, and luteolin-7-O-glucouronide contributed to the antioxidant activities. Hierarchical cluster analysis (HCA) grouped samples accordingly. Roasting process could be considered as a better daily thermal treatment for hulless barley than steaming in terms of phenolic compounds and their antioxidant activities.  相似文献   
993.
Emergence of the multidrug resistant human pathogenic strains is posing a serious health challenge. Resistant strains carry mutations which help them to resist conventional drugs. Therefore, it is required to produce more effective agents that are able to degrade the resistant pathogenic bacterial strains. The antimicrobial properties of nanoparticles (NPs) by eco-friendly green synthetic methods have pulled attention everywhere owing to their exceptional properties and small particle size of 100 nm. NPs are considered to belong to a group of antimicrobial agents which have ability to go inside microbial cells and kill them. In this comprehensive review, we are discussing the green synthetic methods used for the synthesis of NPs targeting the microbes. Additionally, several characterization techniques of antimicrobial NPs are also discussed. Subsequently, various methods used for the analysis of antimicrobial activities and their mechanisms are also examined.  相似文献   
994.
Phytochemical investigation of leaves and stembark of Artocarpus lacucha collected in Thailand resulted in three yet undescribed isomeric flavan-3-ol derivatives (1–3), the four known compounds gambircatechol (4), (+)-catechin (5), (+)-afzelechin (6) and the stilbene oxyresveratrol (7). Compounds 1 to 3 feature 6/6/5/6/5/6 core structures. All structures were deduced by NMR and MS, while density functional theory (DFT) calculations on B3LYP theory level were performed of compounds 1 to 3 to support the stereochemistry in positions 2 and 3 in the C-ring. Possible biosynthetic pathways leading to 4 are discussed. The DPPH assay revealed high radical scavenging activities for 1 (EC50 = 9.4 ± 1.0 µmol mL−1), 2 (12.2 ± 1.1), 3 (10.0 ± 1.5) and 4 (19.0 ± 2.6), remarkably lower than ascorbic acid (EC50 = 34.9) and α-tocopherol (EC50 = 48.6). A cytotoxicity assay revealed moderate but consistent antiproliferative properties of 1 in CH1/PA-1 (ovarian teratocarcinoma) and SW480 (colon carcinoma) cells, with IC50 values of 25 ± 6 and 34 ± 4 µM, respectively, whereas effects in A549 (non-small cell lung cancer) cells were rather negligible. The performed DCFH-DA assay of 1 in the former cell lines confirmed potent antioxidative effects even in the cellular environment.  相似文献   
995.
The leaves of Carica papaya (CP) are rich in natural antioxidants. Carica papaya has traditionally been used to treat various ailments, including skin diseases. This study aims to decipher the antioxidant effects and phytochemical content of different CP leaf extracts (CPEs) obtained using supercritical carbon dioxide (scCO2) and conventional extraction methods. The antioxidant activities of CPEs were evaluated by cell-free (1,1-diphenyl-2-picryl-hydrazyl (DPPH) and ferric-reduced antioxidative power (FRAP)) and cell-based (H2O2) assay. Both C. papaya leaf scCO2 extract with 5% ethanol (CPSCE) and C. papaya leaf scCO2 extract (CPSC) exhibited stronger DPPH radical scavenging activity than conventional extracts. In the FRAP assay, two hydrophilic extracts (C. papaya leaf ethanol extract (CPEE) and C. papaya freeze-dried leaf juice (CPFD)) showed relatively stronger reducing power compared to lipophilic extracts. Cell-based assays showed that CPFD significantly protected skin fibroblasts from H2O2-induced oxidative stress in both pre-and post-treatment. CPEE protected skin fibroblasts from oxidative stress in a dose-dependent manner while CPSCE significantly triggered the fibroblast recovery after treatment with H2O2. GC-MS analysis indicated that CPSCE had the highest α-tocopherol and squalene contents. By contrast, both CP hydrophilic extracts (CPEE and CPFD) had a higher total phenolic content (TPC) and rutin content than the lipophilic extracts. Overall, CPEs extracted using green and conventional extraction methods showed antioxidative potential in both cell-based and cell-free assays due to their lipophilic and hydrophilic antioxidants, respectively.  相似文献   
996.
Actinomycetes are regarded as important sources for the generation of various bioactive secondary metabolites with rich chemical and bioactive diversities. Amycolatopsis falls under the rare actinomycete genus with the potential to produce antibiotics. In this review, all literatures were searched in the Web of Science, Google Scholar and PubMed up to March 2021. The keywords used in the search strategy were “Amycolatopsis”, “secondary metabolite”, “new or novel compound”, “bioactivity”, “biosynthetic pathway” and “derivatives”. The objective in this review is to summarize the chemical structures and biological activities of secondary metabolites from the genus Amycolatopsis. A total of 159 compounds derived from 8 known and 18 unidentified species are summarized in this paper. These secondary metabolites are mainly categorized into polyphenols, linear polyketides, macrolides, macrolactams, thiazolyl peptides, cyclic peptides, glycopeptides, amide and amino derivatives, glycoside derivatives, enediyne derivatives and sesquiterpenes. Meanwhile, they mainly showed unique antimicrobial, anti-cancer, antioxidant, anti-hyperglycemic, and enzyme inhibition activities. In addition, the biosynthetic pathways of several potent bioactive compounds and derivatives are included and the prospect of the chemical substances obtained from Amycolatopsis is also discussed to provide ideas for their implementation in the field of therapeutics and drug discovery.  相似文献   
997.
Rhizosphere microorganisms play important ecological roles in promoting herb growth and producing abundant secondary metabolites. Studies on the rhizosphere microbes of traditional Chinese medicines (TCMs) are limited, especially on the genomic and metabolic levels. In this study, we reported the isolation and characterization of a Steptomyces netropsis WLXQSS-4 strain from the rhizospheric soil of Clematis manshurica Rupr. Genomic sequencing revealed an impressive total of 40 predicted biosynthetic gene clusters (BGCs), whereas metabolomic profiling revealed 13 secondary metabolites under current laboratory conditions. Particularly, medium screening activated the production of alloaureothin, whereas brominated and chlorinated pimprinine derivatives were identified through precursor-directed feeding. Moreover, antiproliferative activities against Hela and A549 cancer cell lines were observed for five compounds, of which two also elicited potent growth inhibition in Enterococcus faecalis and Staphylococcus aureus, respectively. Our results demonstrated the robust secondary metabolism of S. netropsis WLXQSS-4, which may serve as a biocontrol agent upon further investigation.  相似文献   
998.
Compounds bearing thiazole and chalcone pharmacophores have been reported to possess excellent antitubercular and anticancer activities. In view of this, we designed, synthesized and characterized a novel series of thiazole–chalcone hybrids (1–20) and further evaluated them for antitubercular and antiproliferative activities by employing standard protocols. Among the twenty compounds, chalcones 12 and 7, containing 2,4-difluorophenyl and 2,4-dichlorophenyl groups, showed potential antitubercular activity higher than the standard pyrazinamide (MIC = 25.34 µM) with MICs of 2.43 and 4.41 µM, respectively. Chalcone 20 containing heteroaryl 2-thiazolyl moiety exhibited promising antiproliferative activity against the prostate cancer cell line (DU-145), higher than the standard methotrexate (IC50 = 11 ± 1 µM) with an IC50 value of 6.86 ± 1 µM. Furthermore, cytotoxicity studies of these compounds against normal human liver cell lines (L02) revealed that the target molecules were comparatively less selective against L02. Additional computational studies using AutoDock predicted the key binding interactions responsible for the activity and the SwissADME tool computed the in silico drug likeliness properties. The lead compounds generated through this study, create a way for the optimization and development of novel drugs against tuberculosis infections and prostate cancer.  相似文献   
999.
In the search of new natural products to be explored as possible anticancer drugs, two plant species, namely Ononis diffusa and Ononis variegata, were screened against colorectal cancer cell lines. The cytotoxic activity of the crude extracts was tested on a panel of colon cancer cell models including cetuximab-sensitive (Caco-2, GEO, SW48), intrinsic (HT-29 and HCT-116), and acquired (GEO-CR, SW48-CR) cetuximab-resistant cell lines. Ononis diffusa showed remarkable cytotoxic activity, especially on the cetuximab-resistant cell lines. The active extract composition was determined by NMR analysis. Given its complexity, a partial purification was then carried out. The fractions obtained were again tested for their biological activity and their metabolite content was determined by 1D and 2D NMR analysis. The study led to the identification of a fraction enriched in oxylipins that showed a 92% growth inhibition of the HT-29 cell line at a concentration of 50 µg/mL.  相似文献   
1000.
Densazalin, a polycyclic alkaloid, was isolated from the marine sponge Haliclona densaspicula collected in Korea. The complete structure of the compound was determined by spectroscopic methods, including 1D and 2D nuclear magnetic resonance techniques, high-resolution mass spectrometry, and comparison of the calculated and measured electronic circular dichroism spectra. Densazalin possesses a unique 5,11-diazatricyclo[7.3.1.02,7]tridecan-2,4,6-triene moiety, which is connected by two linear carbon chains. This compound was derived from the biogenetic precursor bis-1,3-dialkylpyridnium. Densazalin exhibited cytotoxic activity on two human tumor cell lines (AGS and HepG2) in the Cell Counting Kit-8 (CCK-8) bioassay, with IC50 values ranging from 15.5 to 18.4 μM.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号